Discrete Energy Minimization, beyond Submodularity: Applications and Approximations
نویسنده
چکیده
In this thesis I explore challenging discrete energy minimization problems that arise mainly in the context of computer vision tasks. This work motivates the use of such “hard-to-optimize” non-submodular functionals, and proposes methods and algorithms to cope with the NP-hardness of their optimization. Consequently, this thesis revolves around two axes: applications and approximations. The applications axis motivates the use of such “hardto-optimize” energies by introducing new tasks. As the energies become less constrained and structured one gains more expressive power for the objective function achieving more accurate models. Results show how challenging, hard-to-optimize, energies are more adequate for certain computer vision applications. To overcome the resulting challenging optimization tasks the second axis of this thesis proposes approximation algorithms to cope with the NP-hardness of the optimization. Experiments show that these new methods yield good results for representative challenging problems.
منابع مشابه
On Approximate Non-submodular Minimization via Tree-Structured Supermodularity
We address the problem of minimizing nonsubmodular functions where the supermodularity is restricted to tree-structured pairwise terms. We are motivated by several real world applications, which require submodularity along with structured supermodularity, and this forms a rich class of expressive models, where the non-submodularity is restricted to a tree. While this problem is NP hard (as we s...
متن کاملReflection methods for user-friendly submodular optimization
Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposab...
متن کاملA Unified Multiscale Framework for Discrete Energy Minimization
Discrete energy minimization is a ubiquitous task in computer vision, yet is NP-hard in most cases. In this work we propose a multiscale framework for coping with the NP-hardness of discrete optimization. Our approach utilizes algebraic multiscale principles to efficiently explore the discrete solution space, yielding improved results on challenging, non-submodular energies for which current me...
متن کاملSFO: A Toolbox for Submodular Function Optimization
In recent years, a fundamental problem structure has emerged as very useful in a variety of machine learning applications: Submodularity is an intuitive diminishing returns property, stating that adding an element to a smaller set helps more than adding it to a larger set. Similarly to convexity, submodularity allows one to efficiently find provably (near-) optimal solutions for large problems....
متن کاملSubmodularity of Storage Placement Optimization in Power Networks
In this paper, we consider the problem of placing energy storage resources in a power network when all storage devices are optimally controlled to minimize system-wide costs. We propose a discrete optimization framework to accurately model heterogeneous storage capital and installation costs as these fixed costs account for the largest cost component in most grid-scale storage projects. Identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1210.7362 شماره
صفحات -
تاریخ انتشار 2012